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Median of correlations between ground truth and emotional estimate

* High Activation:
Body language features Body language and speech

 Higher arm and foot velocities . . o .
activation dominance  activation dominance

 More leaning and orientation towards interlocutor GMM-based mapping 0.49* 0.33 0.60* 0.37*
. . LSTM regression 0.45 0.23 0.49 0.21
 Hands further from body and raised higher
Annotator correlations 0.62 0.62 0.62 0.62
* Body location at the center of recording space .
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* More body/arm/feet moving towards interlocutor
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